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(hn) in IL] such that Xpg < X t O X +a h and inf n ¢(xn) > -, 1

n
Then n']xn converoes almost uniformly and in n.]. This extends the

result of Derrienic.
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( 0. Introduction.
\\-‘~‘_;3> This work is a contribution to the non-commutative pointwise
eragodic theory which has been developed recently in a series of
a w GCuThors, —
papers byAC. Lance [9], Y.G. Sinai\an V. Anshelevich [13], F. Yeadon
[16], B. Kiinmerer [8], M.S. Go]dsteié\[4], S. Watanabe [15], D. Petz
[11], J.P. Conze and N. Dana Naoc [1][29These authors extended to the
__, . von Neum?pn algebra context the classical Birkhoff's type theorems.
| Ik:é;;vﬁggs ;;al is to prove a non-commutative version of a subadditive
ergodic theorem which aeneralizes our previous result [5] and contains
as the special cg;es\the ‘commutative' results of Kingman [6,7] and
Derrienic [2]. The 1;§t author very recently proved the followina exten-
sion of Kingman's theorem. ™.
Theorem 0. Let (Q,F,p) be a probability space. Assume that T is
a measurable measure preserving transformation of Q. Put Tf = foT for
f . n.](Q,F,p). Let (fn) be a sequence of integrable functions on 0

satisfying the followina conditions:

n n _ .
1) fn+k-i fn + Tf, +T hy (n,k = 1,2,...), where (hk) is a

k 15
sequence of positive functions such that sup I hkdp < ® JENTA
k ' AR
2) inf k"[ fdp > -, ‘s
ko ]

Then n'1

fn converges in n.1and almost everywhere.
We shall show that the result just formulated can be extended to

the von Neumann algebra context in the case of finite trace. Let us

s

begin with some notation and preliminaries. Let A be a von Neumann

algebra (actina in a Hilbert space H) with a faithful normal tracial

state ¢. Let A denote the *-algebra of all operators in H affiliated

..................................




with (A,¢) in the sense of Seaal [12]. In our case (of finite trace ¢) Elt~
the algebra ; coincides with the algebra of operators measurable in the L

sense of Nelson [10]. A seauence (x ) « A 1S said to be convergent »

bilaterally almost uniformly to an element x ¢ A if, for each ¢ > 0, there

is a projection p ¢ A such that (xn—x)p e A for n large enough, ¢(1-p) <

and Hp(xn-x)oll +~0as n o (comp [12], [13], [10]). The symbol IL](A,qs) '."‘*“-‘

will stand for the Banach space of measurable operators which are intearable

with respect to ¢, with the norm ||x||; = ¢(|x]), where |x| = (x*x)]/Z.

In the sequel we shall identify n.] with the predual A* of A [3]. The ; “’j
symbol n_%s) denotes the hermitian part of n.]. For a self-adjoint opberator '

—T T

x affiliated with A and a Borel set Z on the real line, the symbol ez(x)

will denote the spectral projection of x corresponding to the set Z. In

Ao au

particular, x = [Ae(x) (spectral representation).
dx

We adopt the following definition

Definition 1: A sequence (xn; n=1,2...) in ﬂ.%s)(A,¢) is said to
. be quasi-subadditive if there is a ¢-preserving *-automorphism o of A
and a sequence (hk) of nonnegative elements of n.{s) with € = sup ¢(hk) <
and such that «

(1) %y < X, *+ o', +ah for nk = 1,2,...,

olx,)
(ii) v = inf X > -w,
k

Of course, a in (i) should be treated as the (unique) extension of the

automorphism a to L. f}
Theorem I. Let (xn) be a quasi-subadditive sequence in n_](A,¢). éi“
! - . . -]
o Then n 1xn converges in n.] and bilaterally almost uniformly to an R
"‘: ) A T
a n-invariant element x of L., and o(x) = v.
R Before starting the proof of Theorem 1 we shall formulate a few N
& lemmas. We shall follow the basic ideas of Kinaman [6] and Derrienic [21. ;;fo
‘> .'-..:-.:?\
b3 However, in our context, we cannot perform some operations, for example, uiaif
2 j"..::..\
R to pass to the lim inf AN
< n .
- NOR
- e % " "a .“ -, . . NN
Eibikiflﬂ'-'a“&;iji‘l;"ff : e s e e ST e e e o
Ao b e St PSR SR WSS S N e e Dl e
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3

or lim sup with the sequences of operators under considerations (as in

[6] ang [2] with sequences of real functions). To avoid such procedures

we start with the following lemma. v
Lemma 1. Let, for n,m =1,2,..., b ,c and an(m) be the elements

of 1{*)(4,6) satisfying the inequalities c_> 0, and
(1) 0<b, <c. +a(m forn>m.

Assume that ¢(cm) » 0Oasm-> « and an(m) + 0 bilaterally almost uniformly

as n » o, for eachm = 1,2,... Then bn -+ 0 bilaterally almost uniformly. This

lemma is known [5]. For the sake of completeness we sketch the proof.
Proof. Let € > 0. Choose a subsequence (m ) of positive inteaers

m in such a way that ¢(cm ) < e; with E €n < e/2. Putting E =

S S s=1 s

;=le[0’£m ](cms), we have ¢(1-E) < €/2. Let (Pm) be a sequence of .
s
projections from A such that ¢(1-Pm) < EﬁiT and ||Pman(m)Pm|| +0as n > =,

Put p = a P . Then, for each m, ||pan(m)p|l +>0as n >« In particular,
m=1

llpan(m)p|| < €n for n > Hoye Putting Q = Eap, we have ¢(1-Q) < ¢ and

||anQ|| < IIQcmSIl + 11Q n(m)Oll < Zems, for n > max(mS,Ns), which means

that b -~ 0 bilaterally almost uniformly. O .

Lemma 2. Let N and S be two bounded linear functionals on A. Assume

that N is normal (i.e. N ¢ A,) and S is positive and sinqular in the
sense of Takesaki ([14], p. 127). Then N + S > O implies N > 0.

Proof. Let p be an arbitrary orthogonal projection from A. By
Takesaki's theorem ([14], p. 134, Th. 3.8), a positive linear functional
S on A is sinqular if and only if, for every non-zero projection q ¢ A,
there exists a non-zero projection r e A such that r < q and S(r) = 0.

It follows that there is a sequence (pk) of mutually orthogonal projections




--------

..........
.................

.....................

4

in A such that p = § Py and S(pk) = 0. Indeed, it is enough to take in
k=1

A a maximal family of mutually orthogonal non-zero projections (pa)

.-'-‘rcrrr
AR A

such that PSP and S(pa) = 0. Such family is at most countable (since

n
¢ is normal and faithful). Put Q = y pk(n=1,2...). Then by the
k=1
normality of N, we have that N(p) = 1im N(Qn) = Tim [N(Qn) + S(Qn)] > 0.
n n

Since p is arbitrary, by the spectral theorem we obtain S(a) > 0 for all

0 < a « A, which ends the proof. 0O
Lemma 3. (comp. [2], [6]). Let (xn), (hn) and o be as in Theorem 1.

Put
1 m
Yn = m b D) M2l

Then there exists a sequence (zn), 6 < z e n.](A,¢) such that, for every

m > n, we have
n-1 k nd M

(2) kzoa Yy SXp t @ (ﬁ i hk) +—-z.

Moreover, sup llynll] < w,
n

Proof. We have

m-1
my, = (1 - a)(g ]xk) X
Consequently,
l;\- i ( n)(mil ) ni’l i
m ay =(I-~-a X )+ ) ax =
: =0 " k1 K q=g M
= n m-n-1 n-1 .
- . ~i
SO =y x +) (x,, -a"x,) + ] a'(x -a""'x ).
2 By the quasi-subadditivity of (x ), we have that
; n n
and

............
v, e




] m
Y <X ol L heg)

)
5
z hﬁfgei n, M=l n n-1
. mizoa Yy S X+ (kzlhk) + [kzlxk - (n+l)xn +izoa Xn_5]
Putting
l ~n n-1 j )
: z, -kzlxk - (1) +i§oa Xp_i?
we obtain (2). It remains to prove the boundness of (yk) in n_]-norm.
‘ This follows from the estimations
X S X4 (k=1) X F Xy * ol g
and
]

then we can write

1 T 1M X
llvmll‘l i Hxl +a(a 'Z(g‘lhk']) = .ymH‘l + ||x'l +.a(a E=]hk'l)||1 .<_

hS ¢(X]) + ¢(0(ﬁ Z_ hk-])) i + IIX] + 0("‘“‘ 2_ hk-])”] < . ;:_::'-_:?:_
k=1 k=1
o(x ) =
< o(xy) + |Ix{|] + 2 sup||h ||, — inf —— = const < =." O !ijf
- ] ] k k ] m m <. '..
Lemma 4. Let (x. ), (h ) and a be as in Theorem 1. Then there exist in iﬁfiﬂ
L,(A,4) two elements x and w such that ;?Eiq
n-1 . T
(3) Ja'xc< x, + a"(w) forn=1,2,... -
i=0 Ty
_ ¢(x,) i)
Moreover, ¢(x) = y = inf — SR

n ."-’4
Proof. We follow here the idea of Kingman [6] of using the weak *- S

o

.

AR

s "o Ty
s el

-compactness of the sequence (ym) defined in Lemma 2. Identifyina

IL](A,¢) with the predual A, of A and taking the natural injection of ;i_;'
A, into A* = (A )**, we can treat the operators y from IL, as the N
A
N
N~ ":_\'




.............................................................

continuous linear functionals on A. The images in A* = ll.*f*
of elements X,y,... of n.] we denote by x,y,... In particular,
'}'m(a) = ¢(yma) for a « A. Moreover, we put (ac)(a) = o(a']a) for

-y ~

o« A* and a € A. Then we have in particular a1y = a‘y for y ¢ n.,.

Indeed, since ¢ is a-invariant, we have for a ¢ A, that
(W)(a) = olaly)a) = ¢(a” (a(y)a)) = o(ya" (a)) = y(a™'a) = ay(a).

m
h: The sequences (ym) and (%-E ]hk) are bounded in 1L ,-norm, so the

~ m .
sequences (ym) and (% ¥ hk) are compact in A* in the weak*-topoloay.
k=1

hl The formula (2) can be rewritten in the form

nlepe -~ o m - .
k nl 1
(4) J oty <x +a(x) h)+oz

k=1 n’

hk), say v, and

Taking the suitable Timit points for (y ) and (1

x N3

=]
4, respectively, we can write

n-1 .. - -

(5) Joalvg<x +a"8)  (n=1,2,...),
. - N
i=0

where v ¢ A* and 0 <&  AY,

In particular, we have for n = 1

~

(6) Xy = Vg * &(6) >0

By Takesaki's theorem ([14], p. 127) we can write

i where o, and o are normal and singular part of X1 - Vo + a(§), respectively.

Lets =5, +6_ be also the Takesaki's decomposition of &, i.e. 8, < A,

and & . is a singular functional. Obviously, we have o > 0 and & > 0.

Let us remark that u@ﬂs) is also a singular functional. Indeed, supposing

,‘.- B

- .
o
. I
. ’ . .
SRR ST S bbb

ERR

PN

e e
R
)

|
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that there is a positive normal functional b f-“(ﬁs)’ we would have

o T < 8 and, consequently, a'b =0, s0b = 0.

Summing up, the formula (7) gives us, for some z ¢ A,,

(8) vg =zt ;(GS) - o

with positive singular functionals g and 65. Thus, by formula (5),

we have

(9) :E;&i(z) - fg; al(og) + :2; ) < x +as) +a"6,)
n-1 -

n"] 1' ~ '~n 'vn n'] ~i
(10) ) (2) sx  +a (B )+ra’ )+ ) als),
i=0 i=0
or, equivalently,
(1) N+S>0, .
- “n n']~i o
where N = x + a (§,) - ¥ a'(2) N
n L A
i=0 AR
o " R
and S = « (65) + ) «a (os). R
i=0 p
-
By Lemma 2, N > 0, i.e. we have jﬁi;';
not- M “n SRR,
(12) Yaiz) < X ¥ o (6,) (n=1,2,...)
i=0

The 1ast formula can be easily translated into

nlog n
(13) I a'(x) < x  +a(w),
i=0
for some X, w ¢ n_](A,¢).
To end the proof it remains to show that ¢(x) = vy, or, what is eauivalent,
that z(1) = y. In order to prove this we shall follow the general idea

of [2] and use the uniqueness of the Takesaki's decomposition of




8
f ¢ A* into its normal and singular parts.

Let us notice that formula (12) gives

: Xn(l) ¢(Xn)
Sl (14) z(1) < inf . = inf ==y
n n
Moreover,
] mo_ co(x )
wall) = Timm_ " §7(x, - a x, 4)(1) = Tim S =y,
0 s S k=1 K k-1 s m
Thus, since z = Vo * 9 - ;(gs), we obtain
2 v > 2(1) = vg() - als )(1) +86 (1) >y - als J1) + o (1),
i; Consequently, since ;Ss(l) = 65(1) <8(1) = [I8]] < sup |[hk||] = C,
- k

we have y > z(1) > y - C.

Let us take x& = Xop for k = 1,2,... The sequence (xé) is obviously
quasi-subadditive with respect to o® (and with the same constant C =

= Sip Ilhkll1)' We can now repeat the same reasoning as for (xk). In

particular, we put

.1 0
Ym = w1 gy = @ o)
k=1

and obtain the formula analogue to (8)
(15) 2= v 4al - a2(s)
0 s s’? R
where v) is a weak* 1imit point of y:, z' - the corresponding element Z?Ef
LN
of As, n; and 6; the corresponding singular functionals in Takesaki's Lo
decompositions of suitable o' and §'. Since n']¢(x2n) + 2y, we obtain _ﬁ
9

(16) 2y > z'(1) > 2y - C
Lo
Let us notice now that e
NIy
ey
o e LY
_'.'_‘- -
ROV

L.

R G e e e S e e




.
9
1 1 7
A7) g = @ L g axgq) + ol L (g = axyy o)) 5
k=1 k=1 L
The sequences
] m 1 m ’ \
(18) o ) (g = axpyq) and o L (g g = oxp o) »
k=1 k=1 )
are bounded in Il_]-norm (since Xp =X, 3 <X+ ahr_];
compare the proof of Lemma 3). Taking the suitable weak*-1imit points
" and Vo of these sequences, we obtain <.
’
; _ 1 .
- (19) Vg =3 (\).l + \)2) and Vg = VY + av,.
: Denote by Z; the normal parts of Vs (i = 1,2). The uniqueness of Takesaki's
4
tb* decomposition gives immediately t
»2 - ] I - -
Consequently, we have z(1) = ]2— (z](l) + 22(1)) = %z'(]), R
L.
and (16) gives -
C <
(21) vy 2z2(1) >y - 5 N
The repetition of the procedure just described will give us L
(22) yzz(1)>y-% for n = 1,2...
- 2
which means that v = z(1) and ends the proof of lemma 4. [}
'
Proof of Theorem 1. g
Let (xn) satisfy the conditions (i) and (ii) of Definition 1. By :
lemma 4 there exist 1in A two elements X and w such that -
L
n n- i— : o ":".
(23) u =x_ +a(w) - Joax >0, with ¢(x) = v.
n n iéo - ‘:~
It is easily seen that (un) is a nonnegative quasi-subadditive sequence ",f:
in n.] satisfying the condition "
e

.....................
-----------------------------------------------------

...............
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10
¢(u ) o(x)
(24) inf = inf -y=0
n n n
R
Moreover, by Yeadon's theorem [16], the averages n = ) a x converge
i=0

bilaterally almost uniformly and in B.], so it is clear now that it
suffices to prove our theorem for the quasi-subadditive sequences (xn
which are nonnegative and satisfy the condition

¢(x,)

(25) inf
n

)

X
In this case the convergence in IL] (to zero) of ﬁﬂ' is obvious, so it

X

remains to show the bilateral almost uniform convergence of ﬁﬂ to zero.

To this end let us fix a positive integer m and, for n > m, write n =

with 0 < r <m-1. Then we have
k-1 . k-1 .
; mk mk im mk mk im
0<x <x. + a'x +a hrf'izoa Xp ¥ O X+ hr'iizoa X

m-1
where z =kZ1(xk + hk).

By Yeadon's theorem, the averages
: k-1,
(26) & 7o
i=0
converge bilaterally almost uniformly to some a"-invariant element

X ¢ H_](A,¢), such that ¢(xm) = ¢(xm).

Puttinag ~
k-1 . x - x
21 im m m 1 mk
(27) an(m) " 1ZOQ — f 2

mk + r

+ q
zm,

mk

where k = k(m) is defined by the equality n = mk + r (0 < r < m-1), we get

X X

(28) 0<D<T+alm (n>m

We shall reduce the proof of the theorém to Lemma 1. e shall show that

—

e

N
£

P
L
alaals o

s
)
42 e




1N

an(m) + - bilaterally almost uniformly as n > =, for every m = 1,2,... }f;fj

By Yeadon's theorem, the first term on the right hand side of (27) tends

to zero so it remains to show that %_amk + 0 almost uniformly as k + «

(for a fixed m). PutB = a" and let ) if;i
’
. 2 = wae(dx) s
3 m Jo P
hg be the spectral representation of z_ . Then [0A¢(e(dx))< ® since z ¢ n_](A,¢), fjf}§
’
A and Bk(e(dk)) is the spectral measure of Bkzm. Moreover, ¢(e(d)r)) = o
[_ = ¢(Bke(dx)) for all k. Thus, having taken 0 < Ay 0, we can write f:;5
‘; ; A - - R
. = 0o ... soe
k=1 (B ey 8 2] ) tle(ky )12} < L
n k=1 n )
: (since z € n.]).
i Let ¢ > 0, and choose (kn) in such a way that
1 ¥e {z}) <2
k=kn (kAn,w)
holds for n = 1,2,...
Putting
Q ,=e UL T
k’n [O’Aﬂ] # m
and 0= A~ A Q , we have i3j
n=1 k=k_ <"
n -
o(1-0) <] 2% =, y
n
Moreover, II%-Bkzlel < A, for k > kn which means that -‘]E-Bkzm + 0 almost _oh
uniformly as k + =, for m = 1,2,... Vo
Applying Lemma 1 to inequality (28) and using the fact that : Ei;f
o(x,)  olx) X .
S 0, we get P 0 bilaterally almost uniformly as n » =, !‘“
The proof of Theorem 1 is completed. O[O 5;?;
aten?
S
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